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The initial flow field of an impulsively started incompressible viscous
flow over an elliptic cylinder is analyzed by the method of matched
asymptotic expansions. Analytical solutions for the outer and inner flow
fields are obtained to the third order. The Symbalic Manipulation
Program is used to facilitate the work. Flow separation is studied in
some detail, as are the surface quantities such as the vorticity, the
pressure distribution, the drag, and the lift coefficients.  © 1993 Academic
Press, Inc.

1. INTRODUCTION

To investigate the generation of the viscous layer,
its growth, separation, and resulting effect on the flow
ficld over an elliptic cylinder, Wang [12] was the first to
obtain a second-order analytic solution by the method of
asymptotic expansions. It is to be noted Wang called his
solution first-order, but in conventional notation it should
be called second-order. His Fig. 2 shows the movement of
the separation point along the ellipse perimeter for six
angles of attack at Reynolds number 100, where the
Reynolds number is defined in terms of one-half of the mean
of the major and minor axes. The six curves there are con-
tinuous, smooth, and well behaved. Billings [2] generalized
Wang's work by adding rotation to the elliptic cylinder and
he recovered Wang's solution without rotation. However,
Billings” Fig. 9 for angle of attack 25°, Reynolds number
1000, shows a discontinuity in the separation—reattachment
curve at the surface location #=25° (= 155" in our nota-
tion). This behavior was apparently missed by Wang. See
Fig. 1, in which Wang’s curve for a 2:1 ellipse at angle of
attack 36°, Re=100 was read from his Fig.2 and
reproduced as open circle points, Note that his curve is con-
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tinuous and the present result (to second order) depicted by
the solid curve is discontinuous at 5=n—a = 144°. In the
meantime, Hermel [6} extended Wang’s work to third
order, paralleling the work of Barlev and Yang [1] for the
circular cylinder. Hermel obtained essentially the same
result as Billings.

In the present work, we redeveloped the analytic solu-
tions of the second and then third order, with the third-
order results different from previous studies. When the angle
of attack is 0° or 90°, the initial flow being symmetric, the
separation time versus surface angle # curve is well behaved
as in Wang’s original work. When the angle of attack « is
other than 0° or 90°, there is a discontinuity at the surface
location y = n — ¢. The left branch goes to infinity while the
right branch goes to zero. This may be attributed to the
concept of symmetry paradoxes, ie., almost-symmetric
causes may have quite nonsymmetric consequences. In our
computation the discontinuity begins to appear at an angle
of attack greater than 0°, say 1°. See Birkhoff [3] and
Goldshtik [5]. The progression of flow separation with
time is further discussed in Section 6.3.

In addition to the second-order solutions by Wang
and then by Billings, it is important to obtain third-order
solutions for the following reasons:

1. Within the framework of the first- and second-order
solutions, the normal pressure gradient across the viscous
layer remains zero as in conventional boundary layer
theory. In the third-order solution, this is no ionger the case.

2. Up to the second-order solutions, the separation
bubble as sketched in Fig. 5 of Wang does not appear at all.
This is because the streamline pattern is plotted from the
second-order composite solution of the stream function.
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FIG. 1. Movement of separation and reattachment points for a 2:1
ellipse at angle of attack 36°; O, Wang [12].

That solution is composed of the second-order outer solu-
tion plus the first-order inner solution minus the common
part. However, the first-order inner solution does not
predict flow separation. On the other hand, the third-order
composite solution consists of the third-order outer solution
and the second-order inner solution which does predict flow
separation and hence the appearance of separation bubbles.

3. Once the first-, second-, and third-order solutions
are obtained, we then have enough terms to improve the
asymptotic series by the Padé approximant or Shanks’
gxtension, as explained in Van Dyke [11]. To the third
order, these two methods are equivalent. However, for the
surface vorticity, the improvement over the present third-
order solution presented in Section 6.2 is insignificant. See
Table 1.

In our present work, we carry out the matched
asymptotic solutions to the third-order by utilizing the Sym-
bolic Manipulation Program due to Cole and Wolfram [4].
The surface quantities that compared well with the numeri-
cal solution of the full Navier-Stokes equations by
Staniforth [10] are evaluated and plotted.

JAFROUDI, YANG, AND HERMEL

TABLE ]

Comparison of First-, Second-, and Third-Order and Padé¢/
Shank Improvement of Surface Vorticity for Aspect Ratio 0.6,
Re=2500, xa=0° T=03

b wy W o] Padé/Shank
g 0 0 o 0
10 17.9974 59.0541 44,3090 482052
20 331058 88.0573 75.5034 78.1046
30 44.2587 91.8030 87.2011 87.6073
40 51.9224 86.3535 85.8256 85.8335
50 57.0129 80.0950 80.8346 80.8591
60 60.3144 75.1075 76.0189 76.0788
70 62.3611 71.2440 720388 721169
80 63.4765 67.9057 68.5614 68.6754
50 63.8308 64.4868 650525 68.5927
100 63.4765 60.3833 609275 60.8461
110 62.3611 54.8870 55.4929 554474
120 603144 47.0544 47.8239 47.7817
130 57.0128 35.6376 36.6640 36.6170
140 51.9224 19.3981 20.5957 20,5532
150 44.2587 —1.2372 —0.6236 —0.6317
160 33.1058 —19.9188 —21.5575 —21.6098
170 17.9974 —21.8085 —25.3005 —25.6363
180 0 0 0 0

2. FORMULATION

The elliptic coordinates shown in Fig. 2 will be employed.
See, for example, Milne-Thomson [8] or Yang [137]. Note
the coordinates ¢, #, in Wang [12] are reversed in favor of
more conventional notation. They are related to the
rectangular Cartesian coordinates x, y by

x = —c(cosh £ cos » cos « —sinh & sin # sin «)

(1)

v=c(cosh £ cos » sin a + sinh £ sin # cos «).

Here « is the angle of attack and ¢ is a constant to be deter-
mined having the dimension of length. Note also that the
elliptic coordinate system is left-handed, so that when =0,
the front and rear stagnation points in the outer inviscid
flow are at n=0 and n=w=u, respectively; see Fig. 2.
In general n=constant yields confocal hyperbolas and
¢ =constant, confocal ellipses. The elliptic cylinder in
question is represented by £ = £, The metric in the plane is

(ds)? = (dx)* + (dy)?
= (h, dE)* + (hy dn)*.

From Egq. (1), one obtains

h=h, =h,=c(cosh? £ —cos? n)'7. (2)
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FIG. 2. Elliptic cylindrical coordinates.
The semi-major and semi-minor axes g and b of the ellipsc  where, as in Rosenhead [97],
are respectively
Re= ur_ R 1d b (7
g=ccoshé,, b=csmhé, 3) ¢ =—-=Reynolds number 7)
The Navier-Stokes momentum equation for an incom- St= = Strouhal number (8)
pressible fluid is o
a t 1 and
M v(iw)mux(Vxu)= == Vp4+v Vi (4
ot 24 I
=1 Sla+b)= % (9)
Taking the curl, one obtains the vorticity equation
dw v V2 5 The case to be studied is the initial phase of the
FTERS (uxo)=v Ve ) impulsively started viscous flow over an elliptic cylinder. To

Here the vorticity o is the curl of the flow velocity u and v
is the kinematic viscosity coefficient of the fluid. Equa-
tion (5) is preferred to Eq. (4} in which the pressure is
unknown. Thus we solve (5) for the vorticity and then the
velocity field. The pressure field is to be determined from
Eq. (4). When Eq. (5) is nondimensionalized by the charac-
teristic length /[, time T, and the impulsive flow velocity U,
we obtain

2
R(:-StV @ (6)

achieve a one-parameter type of expansion, &, we assume,
following Wang,

1ot
=St fRe

(10)

where f3 is a constant of order one. Then

g=T (11

T

§(B1)7 = ( )/ (12)
Re
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Equation (6) is now of the form

6—m—st(uxm}=B32V2m.

o1 (13)

The continuity equation

V.u=0 (14)

is automaticalily satisfied by the introduction of the stream
function (&, n) such that ¢- and n-velocity components are

1 8y

hin

Ry
YT

(13)

(16)

where A is given by Eq. (2). For two-dimensional flow, the
vorticity vector is

o= (0,0, w)
and
w=V2, (17)
where
1 /8 @&
2 _
v _h2(652+8q2)' {18)
Finally Eq. (13) becomes
O e (WG oY , 2} EN
PDE, |:6t+h2(6§ o on 65) V|V =0, (19)
The initial and boundary conditions are
IC, (& n, 0)=2sinh({—¢,) sin(y +a) (20)
BC, 1.0(60, '7’ I) = 'ﬁﬁ(gaa na t) =0 (21)
W(g, n, t)=2sinh(§—§,)sin(n+a)  as ¢ — oo
(22)

Boundary condition (21) represents the familiar no-slip and
vanishing normal velocity conditions at the surface of the
ellipse. Initial condition (20) and the far-field boundary
condition (22) both assert that the flow is potential, as given
in Milne-Thomson [8].
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3. MATCHED ASYMPTOTIC EXPANSIONS

The nonlincar system (19)-(22) is to be solved by the
method of matched asymptotic expansions presented in
Van Dyke [11] and Kevorkian and Cole [7]. The outer
solution is expanded into

WG s e)=yiE )+ ) Su(e) . (23)
n=2

In the matching procedures, the gauge functions é,(g)’s are
found to be

d(ey=e""1, n=2,73. (24}
By substituting expansion (23) and (24) into Eq. (19) and
applying initial condition (20), we obtain

Ve =0, n=1,2,3. {25)
With boundary condition (22), the first-order outer
solution is

W&, n, 1) =2sinh({ = £,) sin(h + ). (26)

In view of condition {22), the far-field boundary conditions
for the remaining terms in expansion (23} is

Yo(é,m,1)=0, as &-cw, n=23 (27)
The inner expansion for the stream function is
3 - -
Y tse)= El A,(e) (& m, 1), (28)
Again the gauge functions 4,(¢)’s arc found to be
A,.(e)=¢", n=1,273. (29)

The metric scale (2) is also expanded as

h(éa 11) = hl(éo’ ?])[1 +£Eh2(‘fa= }?)+£262h3(€o’ rl’) + - ],

(30)
where
(&, n)=h<,, n)
1 dh
haol&,, ?1)=h(§a’ ) an (32}
1 0%k
h3(§os ",') = 2h(§m ’1) a_r’g
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The outer and inner solutions are matched by applying
the principle that the outer limit of the inner expansion is
the same as the inner limit of the outer expansion. More
explicitly, the m-term outer expansion of (the »-term inner
expansion) equals the n-term inner expansion of (the
m-term outer expansion). Matching conditions are thus
developed; see Van Dyke [11].

4. ANALYTICAL SOLUTIONS

4.1, First-Order Outer Expansion

PDE, V&= (33)
IC= 'J}‘])(é’ s 0)=2 Sinh(é—éo) Sil’l(?j‘ +d) (34)
BC, W9(& n, 1)=2sinh(E —¢&,) sin(y + )
as & — oo (35)
The solution is
W& n, 1) =2sinh(¢ — £, )} sin(n + a). (36)

The first-order outer solution is the potential flow solution
as discussed in Milne-Thomson [8].

4.2. First-Order Inner Expansion

PDE, ;&qé,_%gafw:o (37)
IC, (0,7, 0)=0 from (20) (38)
BC, ¢i(0,n0)=0, §i0,7n,)=0  from (21)

(39)

MC, (o0, n, ) =¢5(E,, 0, 1) =2sin{y +a)

from (36). (40)

The solution is

- T 172 ] )
S‘m"ll(C)nst):‘q’(ﬁ) him)sm(q-kfx}

1 -2
[C(lerch] m(l—e”= )], (41)

where
h(n)é
= . 4
AL @
From Egs. (30) and (32), one obtains
hy(n) = 2e~%(sinh? £, +sin” #)'2 (43)
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Note the tangential velocity (16) is

i
hl('?)

wilnt 2sin(n +2)[1 —erfc {]

1
",

which is comparable to the classical Rayleigh problem of an
impulsively started flat plate.

4.3. Second-Order Outer Expansion

PDE, Vj2=0 (44)
IC, ¢¥5(&n0)=0 (45)
BC, ¢(o0,4,1)=0 (46)

o 4 T 1/2
MC) 'f’;(étn , ‘!)=¢"1(CD5 f, [): _;E(R_C)
xhl:n)sin(r,t+a) from (41). 47)

The solution is

4850 T 1/2 o .
ey s(&, n, t)__ﬁ(ﬁ) Y [cos adj sin ky

k=0
+sin aB) cos kn]e <= (48)
in which
i sin # sin k#
[ 4
Ak J.O (sinh? &, +sin’ 5)'/? g
, (" cosncoskn
Bk‘L (sinhZZ, +sint )72 F
4.4. Second-Order Inner Expansion
B S S
PDE, ll"z.f}_h_?‘f’zé'&:,;?‘!’1q')1’1£'5_h‘_%\[’15¢15¢,,
2 - 4fih,
P Bl =20
X LV T Ty Vg
— 28,80 g5, (49)
IC, yi(&n,0)=0 (50)
Wis(0,n,0)=0 (52)
MC, (o0, =80 A& n O+ 50 1)
=(B1)"* F(n) (53)

in which from (48)
o @

4 . . ,
Fipy= # z k(cos aA} sin kn + sin aB;, cos kn).
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The solution is
YL 1)

T hz(']’)
"~ Reki(y)

sin(y + a) [ZCZ erfc { — (1 —erfc )

2 1

172 172
x [HTCZ erch—nT(l —erfc )+

8 T\'? 1|
+ T(R—e) (ﬂ)sm(n-%oc)
l:cos(n+cx) 11(”)5111(11+oc):|
hi(n)
2 _e 11
[ s et g

1 i
x(1—e~%erfc C)+§L’3 erfczé‘—zt‘;erfczc

4N 1 2
—( o )C erch+(53—)Cerch

l—erfc )+ (1 —erfc 2'72)

2 _8
37 32m)'7

1 ez 1 4 ey 2 1
bl (1) P

“(5-3) -

The above second-order solution agrees with that of
Wang [12]. However, as previewed in Fig, 1, its numerical

evaluation will be different from his.
4.5. Third-Order Quter Solution
PDE, V¢=0
IC, 35, 7,0)=0
BC, y3(e0,n,1)=0

_ . h
MC, $(E,, 1 )= (oo, 1) = Bt hii”; sin(y+ &)
1
B 8
) F e

8 _4__1 Hpn'-?
X(:«&(Z)‘”% ) ()

1. Ri(n)
X |:hf('?) sin(n + a} cos(n + o) — hf(q)

x sin(y + oc)} from (54).

L .
sia-e |

The solution is

s n. 1)

T (e*sinh 2¢, &
=— {e—i" Y (cos ad; sin ky

Re 4n k=0
. L 2p%e
+ sin aBy cos ky) e FE S — —
o o0 .
X Z |:COS x ( Z jAJ{A}f.lk) sin k?]
k=0 J=0

+sina ( > B B;‘k) cos kn] e F- ‘fﬂ’}
=0

LS A (T
¥\ 3(2)'2 9n Re

z U | .
x{ Y [(Cos 2047 — 5 A;c"+Zcos 2aA;) sin 2ky
k=1

. I ; .
+ (sm 2uB; — 7 sin 2&8}2’) cos 2knd ¢ ~ 5 %)

1 1 :
+ 3 (sin 2aB; — 3 sin 2ocBL“)}
in which

I r sin # sin kn
«= o (sinh? &, +sin? )2 "

m sin jn sin k# d
o (sinhZ ¢, +sin2 ) 2"

Vi
Al =

4= F sin 2n sin 2kn
=1

- : dn,
sinh? &, + sin” n)*? 1

_ (™ sin2gsin 2ky
« =y (sinh? &, < sin? gy P

iv

T gin 4y sin an
o (sinh? &, 4+ sin? #)*? G

v

k=

m cos i cos kn
o (sinh? &, +sin? x)?

"

i .[ﬂ cos jn cos ky
= Jy (sinh? ¢, +sin? )7
. (® cos2qcosZhy
B :j 13 AL
o {sinh? ¢, +sin® )Y
W (™ sin? 25 cos 2kn
k= 52 41

o (sinh? &, +sin® n)
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4.6. Third-Order Inner E j 2% =
T Epansion Ga(g) = ¢ — 3 k[cosoc ( Y jAAY )sin ky
I '6 I i 1 Li 1i k=1 i=1
PDE, ¥l — 3 Vi = 5V ul 2 w
11 1 : + sin o ( Y JB; B;‘k) cos kn]
7? 'j;ilfiﬁ ;ffq h3 d’ 1¢l/l’ 288 =
1* The solution 1s
+h—:;111",555¢ 54—“‘51,11"155,,4125 e LG, 1)
W 2;!12 T 1 T
+_¢lﬁw1_ é —— + K —_G K
ARG AN Re 12 sin{n + a) Ko({) + Rehn i) K,(C)
By gry o T
T Ve + 22 [Galm) = Galm] K(0)
2 (3 2’;? ) TR ;
1 “Re At sin{n +a) J({)
x‘jfs:“[’iéﬁ’ lff’ W e T hY T h2
———35111(?1+a)Jz(C)———sm(r1+oz)J3(s)
. 3h§ 2hy ¢ hi Re ]
—Mﬁﬁ[Tf 168EE T hy | 71 .
! —— = sin(n + o) Jo({) — — —sin(y + ) J5({)
P 4 - Re A} Re h;
+'h_2¢15§m1+ﬁ(3h2_2h3) ‘fd/lf&f T I T b
1
a2, ooy e g3 oS+ ) Sl = o= Fn) Jo(0)
T Vgt 3y —2hy — ¥ ! l
h; hz f h, ¢ 3 T\2
2h, - - ——T(k) Gi(n) K;5(£)
— & ez — 22 ¥ '2555} (60) 2 \Re
n 1/2 1
Ti T h h
IC, @i, =t (61) -1(5) S+ Ji(0)
BC, ¢5(0,7,1}=0 (62
_ ) T
Y 5:0,1,1)=0 T(Rle) —%sm(rﬁ-a cos(n +x) Jo({)
= ]
MC, (o0, n, Y)=—'f/° (&or M)+ EWS S0 1)
38 3 15&1 2e¢ T(Rl) ('21 cos(n + ) J ()
+ W50, 1)=& sin(y + o) ¢ hy
— 1/2
— (B)"" £G.(n) — B1G(n) + B1Galn) T(i) FODRY Gion + ) 7 (0)
— (N2 Gy(n)  from (59) (63) ¢
. . 12
i whic AT N
4ot Re I
Gi(n)=—x Z k[ cos aA} sin ky + sin o8B}, cos kn] T ‘(%)
z 7 () Esintr 40 40
1

gt smh 2
—i Y k[cos A sin kn
4z o

+ sin 2B} cos kn ]

36360 g 4
o0 =355 5 )

G} =

Lh?
~I 5o S 1+ o) J1a()

1

1 . 1 .
-7 r sin(n +a} J,5(0) = T° i sin’(n + o) Jy6({)
1 1

"
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Ry Al
-1 h—; sin(n +2) J({) — T? h—; cos(n +a} J;5(0)

i 1

i 1 1
x Y k |:(cos 204; ¥ =3 Ay + rhaa ZaA,‘;) sin 2kn
1

k=

h’
- Tzh—écos3(n+a)llg(i) (64)

1 A
-+ (sin 2aB; — 3 sin ZaB’k") cos 2k:1j|
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in which
Ko({)= —~207
K({)=2(
Ka(0) = —[(1 +2::2)erfcf:—§ce—€2}+1
' 5 i )
Ki(l)= *T[—(3C+2§3)erch+(l +§2)ﬁﬁe—s :|_|__
n 3

JI(C)=[lsn‘ﬂls(oonSn”ﬁ“(oo}—%]

X[(1+2f:2)(1—erfco+ A e ‘|

T g A0
51+ 20 ——5le™ 5

3,2
2 {

7
—Eerfc {4+ L2erfe {4+ 1604 erfe {

+ 8x' 2 erfc {(1 + 20 [20,(0) + 11,(0)]
— 81 + 20 20 + 11,(8)],

where

= Ceatetar
¢ 2

L= e ere*
4]

1a)= ] e erte? Lt

140 = f; P erfc ¢ dr.

The remaining J({}'s are lengthy expressions, which will
not be reproduced here, Similar expressions may be found
in Hermel [67]. The third-order solutions presented here
are new and important for the reasons given in the
Introduction.

5. SURFACE QUANTITIES

The surface quantities are obtained from the inner
solution to the third order.

5.1. Vorticity

1 R 1/2 o _
w(ém s I) =51 r (_E) [lnb llfc(o’ s !}+ 8'/’ fzc_;;(ov H, t)

MM\ T

+e3 52(0, 1, 1) + O(e7) ], (65)

recalling Eqs. (41), (54), and (64).
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5.2. Progression of Separation Point with Time
This is solved from the condition for flow separation

a)(é\:o’ 'I’ t) = 0’

or from
lj; 5155(0! i, [)+ 84_’ 'ZEC(Oa ", {)+ 62\(} 13&’{05 h !)20 (66)

5.3. Pressure Coefficient

The pressure distribution on the elliptic cylinder is
expressed in terms of the pressure coefficient defined as

p(éaa ", l)_poo

CP pU2/2

=Cp+Cp, (67)

in which p_, is the free-stream pressure. For expediency, we
evaluate the first term

_P(‘sus 7, E)_ptﬁo; &£, !}
Cpl(ios ", [) = pU2/2
2 e /dw
=k (7).

1

=37 [ Uhleal®n 0+ 0500

_ 2
+ &% 7,0, 9, 1)] dn (T R

ha(&o. 1) .
g ‘L (&, n) [y 1200, 1, 1) + & 50, 1, 1)

+ &% (0, n, 1)1 diy. (68)

The second term is one, which may be obtained from the

potential flow solution in Milne-Thomson [8, p. 171] with
=g

P(éas . I)_pco

sz(éa! H, t)E pU2/2

t+bfay, 1 —cos2(n—ua)
=1~ . (69
! (l —b/a) cosh 2&, —cos 2p (69)
5.4. Drag Coefficient
The drag consists of the pressure and friction parts:
Cp=Cp,+Cp, (70)

— o 2n /B

4
Cp,= ‘;{e [+cosh§0‘s;info‘0 (E)éo(l_cosn)dn

2n
—sinh &, cos & J (g—?) sin # dl’f:l
0 a

(71)
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s

4
CD=

2n
"= Re [cosh Eocosa .[0 (o), sin ndy

+sinh &, sine [ (@), cosna’n}. (72)
0
5.5. Lift Coefficient
Similarly the lift coefficient is
C,=C,+C, {(13)

4e =% -
C,,= e [+cosh§ocosa[0 ( ) (1 —cosn)dy

+sinh £, sin « ( ) sin » dnj| (74)
0 éa
de =5 2m
Cp= Re —cosh &;sina . (w),, sinn dn
2
+sinh &, cos ocJ‘ (w)s, cosn a’nj|. (7%)
0

6. RESULTS

The analytical solutions to the third order obtained for an
impulsively started incompressible, viscous flow over an
elliptic cylinder have been evaluated numerically. To com-
pare with the numerical solutions of Stamforth [10], we
consider an elliptic cylinder with aspect ratio

b =0.6,

p re, £,=0.6931471805

at Re = 2500. Note that the Reynolds number defined in our
present work is half of that defined by Staniforth. The case
of the infinite Reynolds number corresponding to the
boundary layer rather than the fully viscous flow is aiso
investigated. Several angles of attack were considered in the
computation.

6.1. Flow Pattern

The second-order inner solution of the stream-function
{54) which contributes to the third-order composite solu-
tion is plotted in Fig. 3 for aspect ratio 0.6, Re =2500,
T=1.0, and a =0°, 45°, and %0°. Figure 3a shows the sym-
metric flow pattern with the magnified bubble in Fig. 3b.
For T=0.5, the bubble is not quite discernible. So, we plot
the flow contour for T= 1.0, where we stretched to the limit
of the theory. Figures 3c and d are for a = 45°, for which the
flow is no longer symmetric. Figures 3¢ and f show the flow

297

contour at « =90° which is again symmetric along the flow
direction. Figures 3 should be viewed together with Figs. 4
to observe the separation and reattachment of the flow.

6.2. Vorticity

The vorticity on ‘the surface of the elliptic cylinder as
given by Eq. (65} for Re = 2500 is evaluated and plotted in
Figs. 4a, b, and c. Figure 4a is for angle of attack o = 0. The
flow for this case is symmetric. For nondimensional time
T<0.2, the Mlow is attached. At T'=10.35, the flow separated
at T=40.25 (Fig. 7) at the rear stagnation point and the
separation bubble grows with time. At T=0.5, the bubble
spans from # ~ 150° to the rear stagnation point 4 = 180°.
As mentioned in the Introduction, the Padé approximant
and Shank extension to the third order are the same. For
example, the improved surface vorticity, w,,, is given in
terms of the first-, second-, and third-order vorticity as

W @, — w3

@y = —
P s+ @, — 2w,

These values are tabulated in Table 1 for the ellipse of aspect
ratio 0.6, Reynolds number 2500, zero angle of attack, and
time 0.5. We see that the first-order solution, being
symmetric does not predict flow separation. The second,
third, and Padé-Shank solutions show the flow separation
bubble. The second-order solution is improved by the
third. However, the third-order solution and Padé-Shank
improvement are in good agreement. Figure4b is for
o =45°, where the flow is no longer symmetric. For T< 0.2,
the flow is attached. For 7=0.35, however, the flow is
already separated, the bubble growing from the rear stagna-
tion point # = 135° to about 4 = 182° It is to be noted that
the flow rotation is counterclockwise between y = 135° and
315° and is consequently shown to be negative in Fig. 4b.
Figure 4c shows the surface vorticity for o =90°. Again the
flow is symmetric. In fact, we could consider this case, an
elliptic cylinder with aspect ratio b/a=0.6 at an angle of
attack o =90° equivalently as an elliptic cylinder with
bla=1/0.6=1.6 at 2 =0°. Therefore, the surface vorticity
distribution between # = 90° and 270° is a mirror image of
the surface vorticity between # = 270° and # = 90° in Fig. 4c.
For T« 0.2, the flow is attached. For T = 0.35, the flow is
separated. The bubbles are growing from 5 ~ 132° to 162°
and symmetrically from » = 48° to 18°. Figures 4a, b, and ¢
compare very favorably with Figs. 11, 14, and 15 of
Staniforth [10].

For Re = oo, the corresponding figures look qualitatively
the same as Figs. 4a, b, and c, respectively. They do not
agree as favorably, however, with Figs. 3, 6, and 7 of
Staniforth [10] whose results are based on boundary layer
formulations.
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FIG. 4. Development of the surface vorticity for an elliptic cylinder with aspect ratio 0.6, Re =2500; O, Staniforth [107]: (a) x=0°; (b) & =45°;
{€) x=90",
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6.3. Progression of Separation with Time

The time progression of the separation points, where
velocity and shear stmultaneously vanish, given by Eq. (66),
for a b/a=0.6 ellipse at a=45°, Re=2500, looks
qualitatively like Fig. 1. A discontinuity occurs at #=
n—a=135° As shown in Fig. 5 the severity of this discon-
tinuity diminishes as the Reynolds number increases. Recall
that the asymptotic solution is valid for smail time and large
Reynolds number. At Re =2500, the gap between the two
curves is AT=02. At Re=10° 4T=004; Re=10%
AT =001, and at Re=10"" 2 c0, the discontinuity essen-
tially vanishes. Strictly speaking, the present solution is
valid for Reynolds numbers over 10° But comparing
with the numerical computation of Staniforth, the other
quantities obtained for Re = 2500 in the present work are
quite acceptable. Incidently, his work does not show any
discontinuity,

The progression of the separation points for flow past an
elliptic cylinder with aspect ratio 0.6, Reynolds number
10°~ oo, and angles of attack a=0° 45°, and 90° are
plotted in Fig. 6. At o =0, the flow starts to separate at the
rear stagnation point n=180° at T'=10.19. The symmetric

J 1 T T T 1
120.0 1500 180.0 210.0 240.0 270.0

n

T
40.0  40.0

FIG. 6. Progression of the flow separation points for an elliptic
cylinder with aspect ratio of 0.6, Re = 10%, and o = 0°, 45°, and 90°.
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separation bubble then grows gradually with time. At
2 =90° the flow is again symmetric, but starts to separate
at two locations n =29° and 151° at T=10.27. The two bub-
bles growing with time start to merge into one at 7'=40.51,
spanning from n=10° to 170°. At x=45° the flow is no
longer symmetric as previously stated. The flow starts to
separate at n=165° T=0.19. A second bubble develops
much later at T=0.71 at #=>53° and at T'=0.74 merges
with the first bubble, spanning from » =45° to 187°.

The time of separation decreases with Reynolds number
as shown in Fig 7. For Re> 10° the separation time is
essentially a constant, 7= 0.19 for an elliptic cylinder with
aspect ratio 0.6 and o =0°.

6.4. Pressure Coefficient

The pressure coefficient on the elliptic cylinder surface,
Eq. (68), is evaluated for aspect ratio 0.6 and Re = 2500 and
plotted in Fig. 8 at angles of attack (a) «=0°, (b) x=45°,
and (c) « = 90° for several times, Again the pressure is sym-
metric with respect to y = 1807 at & = 0° and with respect to
# =90° at & = 90°. At o = 45°, the pressure distribution is no

0.3
(I

el
¢ 1 168 100 10 1 10 1 ¢ 10‘;l

Re

FIG. 7. Time of flow separation versus Reynolds sumber for an
elliptic cylinder with aspect ratio of 0.6 and ¢ =0°.
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FIG. 9. Development of the surface pressure coefficient for an eltiptic
cylinder with aspect ratio of 0.6, Re = co, and «=0°, 15°, 30°, 45°, 75°,
and 90°,

longer symmetric, with higher pressure on the windward
side. The numerical computations of Staniforth, represented
by open symbols, agree. The pressure coefficient, Eq. (69),
for potential flow is the same as that for Re = oo plotted for
six angles of attack in Fig. 9.

6.5. Drag Coefficient

The drag coefficient, Eqs. (70), for an elliptic cylinder
with aspect ratio b/a = 0.6, at Reynolds number 2500, and
angles of attack «=0° 15°, and 45° are plotted in Fig. 10.
Initially at T=0, the cylinder experiences an infinite drag,
which is due to the impulsive start of the cylinder. Kinetic
theory may be required to explain the behavior of the flow
at small time; see Yang and Lees [147].

6.6. Lift Coefficient

The corresponding lift coefficient, Eqs. (73), is plotted in
Fig. 11. At 7> 0.6, C, becomes negative, which may be
attributed to the fact that the present asymptotic solution is
valid only for the small time. In fact, at larger Reynolds
number, the lift is less negative. As in the case of the circular

JAFROUDI, YANG, AND HERMEL

FIG. 10. Time history of drag coeflicient for an elliptic cylinder with
aspect ratio of 0.6, Re = 2500, a =0°, 15°, and 45°.

cylinder studied by the same method in Barlev and Yang
[ 17, both lift and drag decrease with time which is assumed
to be small. However, Staniforth’s numerical computation
shows that initially the lift and drag both decrease with time
but then eventually start to increase with increasing time. At
time zero, the lift coefficient also goes to infinity due to the
impulsive nature of the flow.

7. CONCLUSION AND DISCUSSION

The impulsive, incompressible viscous flow past an ellip-
tic cylinder has been studied by the method of matched
asymptotic expansions to the third order, for which the
pressure varies across the viscous layer. The outer flow has
been shown to be irrotational, governed by the Laplace
equation. The inner flow has been shown to be governed by
the more complicated diffusion-type partial differential
¢quations whose analytic solutions have been facilitated by
the Symbolic Manipulation Program. A uniformly valid
composite solution has been constructed from the outer and
inner solutions. All of these solutions are valid for small
times and large Reynolds numbers. However, the composite
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FIG. 11. Time history of lift coefficient for an elliptic cylinder with
aspect ratio of 0.6, Re = 2500, « = 0°, 15°, and 45°.

solution is too lengthy to be included; see Ref. [6] for
details.

Numerical computations for the surface quantities such
as the vorticity, the pressure distribution, the drag, and the
lift coefficients were carried out for an ellipse of slenderness
ratio 0.6 and Reynolds number 2500 in order to make com-
parisons with the numerical computations of Staniforth.
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The agreement in general is good. The discontinuity in
Fig. 1 could perhaps be further studied by a third expansion.
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